Skip to main content

Making a deep learning model to predict which digit it is using keras

Another post starts with you beautiful people!
In previous post we have learnt keras workflow. In this post we will understand how to solve a image related problem with a simple neural network model using keras. For this exercise we will use MNIST hand written digit datasetThe MNIST database of handwritten digits has a training set of 60,000 examples, and a test set of 10,000 examples. It is a subset of a larger set available from NIST. The digits have been size-normalized and centered in a fixed-size image. This is a very popular dataset to get started with images. You can download this dataset from this link.

In this dataset, each digit shows an image and each image is composed of 28 pixel by 28 pixel grid. The image is represented by how dark each pixel is. So zero will be darkest possible while 255 will be lightest possible. Our goal is to create a deep learning model that will predict which digit it is. Here 28 x 28 pixels grid are flattened to 784 features for each image. Let's load the training and test datasets in our colab notebook and explore-




You can see the training dataset has digit image from 0-9. Since the data type of the digits is int64, we will optimize the memory by changing their data types to float32 and int32. One important point here is that to process image in a neural network model, we need to scale it first. This scaling is also called normalization. In normalization image having grey scale form 0-255 is changed into 0-1 pixel range. We can achieve this by dividing each value by it's maximum value that is 255 as shown below-


Next we convert our target variable to binary class matrix using keras.utils api-
Rest all steps we have already learnt in previous post, as a recall now we will create a model, compile it and fit it. Here we will use softmax activation function on the output layer to turn the outputs into probability-like values and allow one class of the 10 to be selected as the model’s output prediction. Logarithmic loss is used as the loss function (called categorical_crossentropy) and the efficient ADAM gradient descent algorithm is used to learn the weights-


Above cell will show following output-

See here, our model is trained on 29399 samples and validated it on rest 12601 samples because we have used validation_split argument with 30% value. After epoch 7 the model stopped training by itself because it was not improving anymore. We have got our model accuracy around 97%. Try to train above model with different number of nodes, increase number of hidden layers and see if you are getting any better result! Now we can use our model to make prediction on test dataset-
You can also save your result in a csv as below-

In our submission file we are predicting that image having ImageId 1 in test dataset is the image of digit 2, ImageId 2 is of image 0 digit and so on. That was quite easy right. With the help of GPU supported environment like Google Colab and powerful deep learning library keras we are able to achieve a very good accuracy. In next post we will move ahead and learn advanced deep learning with keras. Till then Go chase your dreams, have an awesome day, make every second count and see you later in my next post.






Comments

Post a Comment

Popular posts from this blog

How to deploy your ML model as Fast API?

Another post starts with you beautiful people! Thank you all for showing so much interests in my last posts about object detection and recognition using YOLOv4. I was very happy to see many aspiring data scientists have learnt from my past three posts about using YOLOv4. Today I am going to share you all a new skill to learn. Most of you have seen my post about  deploying and consuming ML models as Flask API   where we have learnt to deploy and consume a keras model with Flask API  . In this post you are going to learn a new framework-  FastAPI to deploy your model as Rest API. After completing this post you will have a new industry standard skill. What is FastAPI? FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on standard Python type hints. It is easy to learn, fast to code and ready for production . Yes, you heard it right! Flask is not meant to be used in production but with FastAPI you can use you...

How can I become a TPU expert?

Another post starts with you beautiful people! I have two good news for all of you! First good news is that Tensorflow has released it's new version (TF 2.1) which is focused on TPUs and the most interesting thing about this release is that it now also supports Keras high level API. And second wonderful news is to help us get started Kaggle has launched a TPU Playground Challenge . This means there is no any way to stop you learning & using TPUs. In this post I am going to share you how to configure and use TPUs while solving a image classification problem. What are TPUs? You must have heard about TPU while using  Google Colab . Now Kaggle also supports this hardware accelerator. TPUs or Tensor Processing Units are hardware accelerators specialized in deep learning tasks. They were created by Google and have been behind many cutting edge results in machine learning research. Kaggle Notebooks are configured with TPU v3-8s, which is a specialized hardware with...

How to convert your YOLOv4 weights to TensorFlow 2.2.0?

Another post starts with you beautiful people! Thank you all for your overwhelming response in my last two posts about the YOLOv4. It is quite clear that my beloved aspiring data scientists are very much curious to learn state of the art computer vision technique but they were not able to achieve that due to the lack of proper guidance. Now they have learnt exact steps to use a state of the art object detection and recognition technique from my last two posts. If you are new to my blog and want to use YOLOv4 in your project then please follow below two links- How to install and compile Darknet code with GPU? How to train your custom data with YOLOv4? In my  last post we have trained our custom dataset to identify eight types of Indian classical dance forms. After the model training we have got the YOLOv4 specific weights file as 'yolo-obj_final.weights'. This YOLOv4 specific weight file cannot be used directly to either with OpenCV or with TensorFlow currently becau...