Skip to main content

Python Advanced- Series

Today we will learn about one of the most important data structure in pandas library- Series.
It is similar to a NumPy 1-dimensional array.
In addition to the values that are specified by the programmer, pandas attaches a label to each of the values. If the labels are not provided by the programmer, then pandas assigns labels ( 0 for first element, 1 for second element and so on).
A benefit of assigning labels to data values is that it becomes easier to perform manipulations on the dataset as the whole dataset becomes more of a dictionary where each value is associated with a label.
For more details about Series please visit Series in pandas
Let's understand Series and some operations by below code snippets-

Series example:-


Knowing values and indexing of Series:-

Defining custom indexing in your Series:-

Accessing your Series is as same as we saw in NumPy:-

Let's do some mathematical operations in our series-

If you have a dictionary, you can create a Series data structure from that dictionary. Suppose you are interested in EPS values for firms and the values come from different sources and is not clean. In that case you don't have to worry about cleaning and aligning those values-


If any index don't have the value matching the key then it will show as NaN(not a number):-

Make use of isnull() function to find out if there are any missing values in the data structure-

Key feature of Series Data  is that you don't have to worry about data alignment.
Understand this key feature with below example- if we have run a word count program on two different files and we have the following data structures-


Now if we want to calculate the sum of common words in combined files, then we don't have to worry about data alignment. If we want to include all words, then we can take care of NaN values and compute the sum. By default, Series data structure ignores NaN values-

So keep practicing by your own with above examples in your notebook and comment if you face any issue.

Comments

Post a Comment

Popular posts from this blog

Learn the fastest way to build data apps

Another post starts with you beautiful people! I hope you have enjoyed and learned something new from my previous three posts about machine learning model deployment. In one post we have learned  How to deploy a model as FastAPI?  I n the second post, we have learned  How to deploy a deep learning model as RestAPI ? and in the third post, we have also learned  How to scale your deep learning model API?   If you are following my blog posts, you have seen how easily you have transit yourselves from aspiring to a mature data scientist. In this new post, I am going to share a new framework-  Streamlit which will help you to easily create a beautiful app with Python only. I will show here how had I used the Streamlit framework to create an app for my YOLOv3 custom model. What is Streamlit? Streamlit’s open-source app framework is the easiest way for data scientists and machine learning engineers to create beautiful, performant apps in only a few hours!...

How to use opencv-python with Darknet's YOLOv4?

Another post starts with you beautiful people 😊 Thank you all for messaging me your doubts about Darknet's YOLOv4. I am very happy to see in a very short amount of time my lovely aspiring data scientists have learned a state of the art object detection and recognition technique. If you are new to my blog and to computer vision then please check my following blog posts one by one- Setup Darknet's YOLOv4 Train custom dataset with YOLOv4 Create production-ready API of YOLOv4 model Create a web app for your YOLOv4 model Since now we have learned to use YOLOv4 built on Darknet's framework. In this post, I am going to share with you how can you use your trained YOLOv4 model with another awesome computer vision and machine learning software library-  OpenCV  and of course with Python 🐍. Yes, the Python wrapper of OpenCV library has just released it's latest version with support of YOLOv4 which you can install in your system using below command- pip install opencv-pyt...

Exploring The File Import

Another post starts with you beautiful people! Today we will explore various file import options in Python which I learned from a great learning site- DataCamp . In order to import data into Python, we should first have an idea of what files are in our working directory. We will learn step by step examples as given below- Importing entire text files- In this exercise, we'll be working with the file mobydick.txt [ download here ] It is a text file that contains the opening sentences of Moby Dick, one of the great American novels! Here you'll get experience opening a text file, printing its contents to the shell and, finally, closing it- # Open a file: file file = open('mobydick.txt', mode='r') # Print it print(file.read()) # Check whether file is closed print(file.closed) # Close file file.close() # Check whether file is closed print(file.closed) Importing text files line by line- For large files, we may not want to print all of th...