Skip to main content

Python Basics- Dictionaries

Dictionary is another useful type in Python and it is indexed by keys(any immutable type).
Today we will learn how to store/extract/deleting a value with some key using dictionaries.
You can find more details here- Python Dictionaries

Following is a given dictionary where we will do some hand on-

  • Add a key to inventory called 'pocket'.
  • Set the value of 'pocket' to be a list consisting of the strings 'seashell', 'strange berry', and 'lint'.
  • sort()the items in the list stored under the 'backpack' key.
  • Then .remove('dagger') from the list of items stored under the 'backpack' key.
  • Add 50 to the number stored under the 'gold' key.


  • Create two new dictionaries called prices and stocks using {} format like the example above.
  • Put these values in your prices dictionary:  "banana": 4,"apple": 2,"orange": 1.5,"pear": 3
  • Put these values in your stocks dictionary:  "banana": 12,"apple": 24,"orange": 15,"pear": 35
  • Loop through each key in prices. For each key, print out the key along with its price and stock information. 



  • First, make a list called groceries with the values "banana","orange", and "apple".
  • Define this two dictionaries:

stock = { "banana": 6, "apple": 0, "orange": 32, "pear": 15 }
prices = { "banana": 4, "apple": 2, "orange": 1.5, "pear": 3 }

  • Define a function compute_bill that takes one argument food as input.
  •  In the function, create a variable total with an initial value of zero. 
  • For each item in the food list, add the price of that item to total. 
  • Finally, return the total. Ignore whether or not the item you're billing for is in stock. Note that your function should work for any food list.
  • Make the following changes to your compute_bill function:
  • While you loop through each item of food, only add the price of the item to total if the item's stock count is greater than zero.
  • If the item is in stock and after you add the price to the total, subtract one from the item's stock count.

So keep practicing by your own with above examples in your notebook and comment if you face any issue.

Comments

Post a Comment

Popular posts from this blog

How to deploy your ML model as Fast API?

Another post starts with you beautiful people! Thank you all for showing so much interests in my last posts about object detection and recognition using YOLOv4. I was very happy to see many aspiring data scientists have learnt from my past three posts about using YOLOv4. Today I am going to share you all a new skill to learn. Most of you have seen my post about  deploying and consuming ML models as Flask API   where we have learnt to deploy and consume a keras model with Flask API  . In this post you are going to learn a new framework-  FastAPI to deploy your model as Rest API. After completing this post you will have a new industry standard skill. What is FastAPI? FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on standard Python type hints. It is easy to learn, fast to code and ready for production . Yes, you heard it right! Flask is not meant to be used in production but with FastAPI you can use you...

How to install and compile YOLO v4 with GPU enable settings in Windows 10?

Another post starts with you beautiful people! Last year I had shared a post about  installing and compiling Darknet YOLOv3   in your Windows machine and also how to detect an object using  YOLOv3 with Keras . This year on April' 2020 the fourth generation of YOLO has arrived and since then I was curious to use this as soon as possible. Due to my project (built on YOLOv3 :)) work I could not find a chance to check this latest release. Today I got some relief and successfully able to install and compile YOLOv4 in my machine. In this post I am going to share a single shot way to do the same in your Windows 10 machine. If your machine does not have GPU then you can follow my  previous post  by just replacing YOLOv3 related files with YOLOv4 files. For GPU having Windows machine, follow my steps to avoid any issue while building the Darknet repository. My machine has following configurations: Windows 10 64 bit Intel Core i7 16 GB RAM NVIDIA GeForce G...

Machine Learning-Linear Regression

Another post starts with you beautiful people! In my previous posts we have learnt the Python basics and advanced, statistics techniques for the Data Science track. I suggest you to please read previous post just for 10-15 min. before sleeping daily and then there is no any obstacle to stop you to become a great Data Scientist. In this post we will start our Machine Learning  track with the  Linear Regression   topic. I Have highlighted the both so please click on the link to know the formal definition of those. Machine learning-  More specifically the field of predictive modeling is primarily concerned with minimizing the error of a model or making the most accurate predictions possible, at the expense of explainability. In applied machine learning we will borrow, reuse and steal algorithms from many different fields, including statistics and use them towards these ends. Linear Regression was developed in the field of statistics and is studied as a model ...