Skip to main content

Python Advanced- Inroduction to NumPy

NumPy or Numerical Python is the most fundamental package designed for scientific computing and data analysis.
Most of the other packages such as pandas is built on top of it, and is an important package to know and learn about.
At the heart of NumPy is a data structure called ndarray. Using ndarray, you can store large multidimensional datasets in Python.

 In order to be able to use NumPy, first import it using import statement-

If you are doing performance intensive work, then saving space is of importance. In such cases, you can import specific modules of NumPy by using -

Let's understand why we need numpy with below code snippet?

If you run the above code you will get following error-
To get the expected result we need to convert the list into numpy array first as below -

I hope with the above example you can easily understand that numpy is an important feature of Python and widely used in mathematical operations required in Data Science.

We can easily find out the shape, size, dimension and type of the array with below code snippet-


Suppose you want to edit the size of the given array then you can do it as below-

For more details about NumPy operations please see NumPy

So keep practicing by your own with above examples in your notebook and comment if you face any issue.

Comments

Post a Comment

Popular posts from this blog

How to deploy your ML model as Fast API?

Another post starts with you beautiful people! Thank you all for showing so much interests in my last posts about object detection and recognition using YOLOv4. I was very happy to see many aspiring data scientists have learnt from my past three posts about using YOLOv4. Today I am going to share you all a new skill to learn. Most of you have seen my post about  deploying and consuming ML models as Flask API   where we have learnt to deploy and consume a keras model with Flask API  . In this post you are going to learn a new framework-  FastAPI to deploy your model as Rest API. After completing this post you will have a new industry standard skill. What is FastAPI? FastAPI is a modern, fast (high-performance), web framework for building APIs with Python 3.6+ based on standard Python type hints. It is easy to learn, fast to code and ready for production . Yes, you heard it right! Flask is not meant to be used in production but with FastAPI you can use you...

LightGBM and Kaggle's Mercari Price Suggestion Challenge

Another post starts with you beautiful people! I hope you have enjoyed and must learnt something from previous two posts about real world machine learning problems in Kaggle. As I said earlier Kaggle is a great platform to apply your machine learning skills and enhance your knowledge; today I will share again my learning from there with all of you! In this post we will work upon an online machine learning competition where we need to predict the the price of products for Japan’s biggest community-powered shopping app. The main attraction of this challenge is that this is a Kernels-only competition; it means the datasets are given for downloading only in stage 1.In next final stage it will be available only in Kernels. What kind of problem is this? Since our goal is to predict the price (which is a number), it will be a regression problem. Data: You can see the datasets  here Exploring the datasets: The datasets provided are in the zip format of 'tsv'. So how can ...

How can I become a TPU expert?

Another post starts with you beautiful people! I have two good news for all of you! First good news is that Tensorflow has released it's new version (TF 2.1) which is focused on TPUs and the most interesting thing about this release is that it now also supports Keras high level API. And second wonderful news is to help us get started Kaggle has launched a TPU Playground Challenge . This means there is no any way to stop you learning & using TPUs. In this post I am going to share you how to configure and use TPUs while solving a image classification problem. What are TPUs? You must have heard about TPU while using  Google Colab . Now Kaggle also supports this hardware accelerator. TPUs or Tensor Processing Units are hardware accelerators specialized in deep learning tasks. They were created by Google and have been behind many cutting edge results in machine learning research. Kaggle Notebooks are configured with TPU v3-8s, which is a specialized hardware with...