Skip to main content

Machine Learning:Naive Bayes Classifier


Another post starts with you beautiful people!
Continuing our Machine Learning track today we will apply the Naive Bayes Classifier but before that we need to understand the Bayes Theorem. So let’s first understand the Bayes Theorem.

Bayes Theorem works on conditional probability. Conditional probability is the probability that something will happen, given that something else has already occurred. Using the conditional probability, we can calculate the probability of an event using its prior knowledge.
Below is the formula for calculating the conditional probability.
where
P(H) is the probability of hypothesis H being true. This is known as the prior probability.
P(E) is the probability of the evidence(regardless of the hypothesis).
P(E|H) is the probability of the evidence given that hypothesis is true.
P(H|E) is the probability of the hypothesis given that the evidence is there.

We can understand the above concept with a classic example of coin that I summarized as below picture-


Now understand the Naive Bayes Classifier in the following easiest way-

So you must be thinking in real world where we can apply this algo to solve a problem?
The answer is Email Classification ! To filter the Spam vs Ham.
Sound interesting right! let's start hands on to solve this email classification problem and build our model. Our goal is to train a Naive Bayes model to classify future SMS messages as either spam or ham.
We will follow below steps to achieve our goal-

  1. Convert the words ham and spam to a binary indicator variable(0/1)
  2. Convert the txt to a sparse matrix of TFIDF vectors
  3. Fit a Naive Bayes Classifier
  4. Measure your success using roc_auc_score
Importing required libraries-


I request you to please go through official document [sklearn.naive_bayes] of each library and read once.

Load our spam dataset-
Train the classifier if it is spam or ham based on the text:-

Convert the spam and ham to 1 and 0 values respectively for probability testing:-

Do some cleaning:-

Split the data into test and train:-


Check for null values in spam:-

Let's predict our model:-

Check our model accuracy:-

Looks great! with this model the success rate is 98.61%.
I hope with this real world example you can understand how easy is to apply Naive Bayes Classifier.

Meanwhile Friends! Go chase your dreams, have an awesome day, make every second count and see you later in my next post.

Comments

Popular posts from this blog

How to use opencv-python with Darknet's YOLOv4?

Another post starts with you beautiful people 😊 Thank you all for messaging me your doubts about Darknet's YOLOv4. I am very happy to see in a very short amount of time my lovely aspiring data scientists have learned a state of the art object detection and recognition technique. If you are new to my blog and to computer vision then please check my following blog posts one by one- Setup Darknet's YOLOv4 Train custom dataset with YOLOv4 Create production-ready API of YOLOv4 model Create a web app for your YOLOv4 model Since now we have learned to use YOLOv4 built on Darknet's framework. In this post, I am going to share with you how can you use your trained YOLOv4 model with another awesome computer vision and machine learning software library-  OpenCV  and of course with Python 🐍. Yes, the Python wrapper of OpenCV library has just released it's latest version with support of YOLOv4 which you can install in your system using below command- pip install opencv-pyt...

Export your custom YOLOv7 PyTorch model to ONNX

  Another post starts with you beautiful people💓. In my previous post, we learned about training a custom dataset with an official Pytorch-based YOLOv7 object detector. If you have not seen that post, I recommend you check it once. The link is  here . Once we achieve the best model, the next important step is to use that model. Sometimes you may need to use multiple ML models which you have trained on different-different ML frameworks like PyTorch, TensorFlow, Caffe, etc. In production or the real world, the trained model can be deployed as Rest API, or integrated with a web application without changing its form but what if you need to use that within your mobile device as an Android or iOS app as well as you want to use it with an embedded system like Nvidia Jetson 💣? Here comes the problem of interoperability. In this post, we are going to learn how can we export our custom YOLOv7 model to ONNX format. ONNX  is an open format built to represent machine learning m...

How to convert your YOLOv4 weights to TensorFlow 2.2.0?

Another post starts with you beautiful people! Thank you all for your overwhelming response in my last two posts about the YOLOv4. It is quite clear that my beloved aspiring data scientists are very much curious to learn state of the art computer vision technique but they were not able to achieve that due to the lack of proper guidance. Now they have learnt exact steps to use a state of the art object detection and recognition technique from my last two posts. If you are new to my blog and want to use YOLOv4 in your project then please follow below two links- How to install and compile Darknet code with GPU? How to train your custom data with YOLOv4? In my  last post we have trained our custom dataset to identify eight types of Indian classical dance forms. After the model training we have got the YOLOv4 specific weights file as 'yolo-obj_final.weights'. This YOLOv4 specific weight file cannot be used directly to either with OpenCV or with TensorFlow currently becau...